Hardy type inequalities on the sphere

نویسندگان

  • Xiaomei Sun
  • Fan Pan
چکیده

In this paper, we consider the [Formula: see text]-Hardy inequalities on the sphere. By the divergence theorem, we establish the [Formula: see text]-Hardy inequalities on the sphere. Furthermore, we also obtain their best constants. Our results can be regarded as the extension of Xiao's (J. Math. Inequal. 10:793-805, 2016).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Hardy-Type Inequalities with Non-conjugate Exponents

We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...

متن کامل

On a decomposition of Hardy--Hilbert's type inequality

In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere

We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for general spectrally defined operators on the space of CRpluriharmonic functions. We will then obtain the sharp Beckner-Onofri inequality for CR-pluriharmonic functions on the sphere, and, as a consequence, a sharp logarithmic Hardy-Littlewood-Sobolev inequali...

متن کامل

Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones

We give various equivalent formulations to the (partially) open problem about Lboundedness of Bergman projections in tubes over cones. Namely, we show that such boundedness is equivalent to the duality identity between Bergman spaces, A ′ = (Ap)∗, and also to a Hardy type inequality related to the wave operator. We introduce analytic Besov spaces in tubes over cones, for which such Hardy inequa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017